

# CuNi10Zn27

## CuNi10Zn27 | C74500

It is an ideal alloy for cold forming. It is a material with high corrosion resistance and is suitable for soldering.

| Comparable Standarts |        |
|----------------------|--------|
| EN                   | UNS    |
| CW401J               | C74500 |

| Chemical Composition % |     |      |         |          |         |
|------------------------|-----|------|---------|----------|---------|
| Cu                     | Zn  | Ni   | Fe      | Pb       | Mn      |
| 61-64                  | rem | 9-11 | 0.3 max | 0.05 max | 0.5 max |

| Physical Properties     |           |          |  |  |
|-------------------------|-----------|----------|--|--|
| Melting Point           | 1000-1035 | [°C]     |  |  |
| Density                 | 8.60      | (g/cm³)  |  |  |
| Cp @ 20°C               | 0.380     | [kJ/kgK] |  |  |
| Thermal Conductivity    | 46        | (W/mK)   |  |  |
| Electrical Conductivity | ≥8.5      | %IACS    |  |  |
| Modules of Elasticity   | 125       | [GPa]    |  |  |
| α @ 20°C                | 16.4      | [10-6/K] |  |  |

Note: The specified conductivity applies to the soft condition only.

Cp specific heat

 $\alpha$  thermal expansion coefficent

| Fabrication Properties |               |
|------------------------|---------------|
| Machinability          | less suitable |
| Gas shield arc welding | fair          |
| Cold Formability       | good          |
| Hot Formability        | less suitable |
| Resistance welding     | excellent     |
| Brazing                | excellent     |
| Soldering              | excellent     |
| Brazing                | excellent     |

#### **Electrical Conductivity**

 $Electrical \ conductivity \ depends \ on \ chemical \ composition, level \ of \ cold \ deformation, and \ grain \ size. \ High \ levels \ of \ deformation \ and \ small \ grain \ size \ reduce \ conductivity.$ 

#### **Typcial Uses**

It is used in the production of connectors, pins and terminals, cutlery sets, zippers, and similar items.

#### **Corrosion Resistance**

Nickel silver materials are resistant to atmospheric conditions, organic compounds, and neutral and alkaline saltine solutions.

Nickel silver materials are not resistant to oxidizing acids and aqueous ammonia.

### **Mechanical Properties**

|      | Tensile Strength | Yield Strangth | Elongation A50 [%]    | Hardness HV [-] | Bend ratio 90° [r] |     |
|------|------------------|----------------|-----------------------|-----------------|--------------------|-----|
|      | [MPa]            | [MPa]          | Eloligation A50 [//s] | naruness nv [-] | GW                 | BW  |
| R360 | 360-430          | ≤ 230          | ≥ 35                  | 80-110          | 0                  | 0   |
| R430 | 430-510          | ≥ 230          | ≥ 8                   | 110-150         | 0                  | 0   |
| R490 | 490-580          | ≥ 400          | ≥ 5                   | 150-180         | 0                  | 0   |
| R550 | 550-640          | ≥ 480          | -                     | 170-200         | 0                  | 0.5 |
| R620 | 620-710          | ≥ 580          | -                     | 190-220         | 2                  | 4   |

Other tempers are available upon request.

r = x \* t (thickness  $t \le 0.5$ mm)

 $\ensuremath{\mathsf{GW}}$  bend axis transverse to rolling direction.  $\ensuremath{\mathsf{BW}}$  bend axis parallel to rolling direction.

# Dimensional Specifications Thickness (mm) Width (mm) 0.10-0.20 10-340 0.21-1.00 5-340 1.01-4.00 15-340 4.01-5.00 25-340