

CuSn5

CuSn5 | C51000

CuSn5 is a solid solution strengthened copper alloy with 5% tin. The alloy is highly suitable for cold forming processes with high strength and hardness. It is corrosion resistant and has good solderability. It offers good electrical conductivity and is used in applications where a combination of conductivity and strength is of great importance.

Comparable Standarts				
EN	JIS	UNS		
CW451K	C5102	C51000		

Chemical Composition %				
Cu	Zn	Sn	Pb	P
rem	0.2 max	4.5-5.5	0.02 max	0.01-0.4

Physical Properties		
Melting Point	1049	[°C]
Density	8.9	(g/cm³)
Cp @ 20°C	0.377	[kJ/kgK]
Thermal Conductivity	96	(W/mK)
Electrical Conductivity	≥17	%IACS
Modules of Elasticity	120	[GPa]
@20-300°C	18	[10-6/K]

Note: The specified conductivity applies to the soft condition only.

Cp specific heat

 α thermal expansion coefficent

Fabrication Properties	
Cold Formability	excellent
Hot Formability	not recommended
Soldering ability	excellent
Oxyacetylene welding	fair
Gas shield arc welding	good
Resistance welding	good
Machining	not recommended
Brazing	excellent

Electrical Conductivity

Electrical conductivity depends on chemical composition, the level of cold deformation, and grain size. High levels of deformation and small grain size reduce conductivity.

Typcial Uses

Automotive, electrical components, connectors, relays and conductor springs, clamps, springs, metal hose, bushings, mechanical and apparatus engineering.

Corrosion Resistance

Bronze is resistant to natural and industrial atmospheres, as well as maritime air, potable and service water (if the flow rate is not excessive), seawater, non-oxidizing acids, alkaline solutions, and neutral saline environments.

However, bronze has low corrosion resistance to ammonia, halogenide, cyanides, hydrogen sulfide solutions and atmospheres, as well as oxidizing acids.

Bronze alloys exhibit enhanced resistance to seawater and pitting corrosion.

Mechanical Properties Bend ratio 90° Bend ratio 180° Tensile Strength [MPa] Yield Strangth [MPa] Elongation A50 [%] Hardness HV [-] [r] [r] BW ВW GW R310 310-390 ≤ 250 ≥ 45 75-105 R400 400-500 ≥ 240 ≥ 14 120-160 0 0 0 R490 490-580 ≥ 430 160-190 R550 550-640 ≥ 510 180-210 0

200-230

≥ 220

1.5

Other tempers are available upon request.

r = x * t (thickness $t \le 0.5$ mm)

R630

R690

GW bend axis transverse to rolling direction. BW bend axis parallel to rolling direction.

≥ 600

≥ 670

630-720

≥ 690

Dimensional Specifications		
Thickness (mm)	Width (mm)	
0.10-0.20	10-340	
0.21-1.00	5-340	
1.01-4.00	15-340	
4.01-5.00	25-340	